
AD-Ri46 57? ARCHITECTURE DESIGN AND SYSTEM; PERFORMANCE ASSESSMENT i/i
AND DEVELOPMENT ME..(U) NAVAL SURFACE WEAPONS CENTER
SILYER SPRING MD J FRANKLIN ET AL. 30 DEC 83

UNCLASSIFIED NSkC/TR-83-324-YOL-i F/G 9/2 NL

J I

41

JL.2

UP f..*

I1.25 A 11.6

OPY RESOLUTION TEST CHART

LI',

ill"-

- ,-- - .o - . .;

AD-A 146 577

NSIWC TR 83-324

ARCHITECTURE, DESIGN, AND SYSTEM;
PERFORMANCE ASSESSMENT AND DEVELOPMENT

METHODOLOGY FOR COMPUTER-BASED SYSTEMS:
VOL I-METHODOLOGY DESCRIPTION,
DISCUSSION, AND ASSESSMENT

BY J. FRANKLIN, C. GRAY, JR.,
ARTHUR WRENN

UNDERWATER SYSTEMS DEPARTMENT

30 DECEMBER 1983

Approved for public releas, distribution unlimited.

~1i84

0~.

NAVAL SURFACE WEAPONS CENTER
Dahigren, Virginia 22448 0 Silver Spring, Maryland 20910

84 10 11 009

UNCLASSIFIED
*ECU I'TY CLASSIFICATION OF TZIS PACE ("ft Data Bteeto

REPORT DOCUMENTATION PAGE REO InSTrUCtORS
I. REPORT NUMBER 12. GOVT ACCESSION NO.3. RECIPIENT'S CATALOG NUMBER

NSWC TR 83-324 10- 1 1 51'
4. ?ITLE (and subtitle) ARCHITECTURE, DESIGN, AND SYSTEM; S. TYPE OP REPORT a PERIOD COVERED
PERFORMANCE ASSESSMENT AND DEVELOPMENT METHODOLOGY
FOR COMPUTER-BASED SYSTEMS: VOL. I - METHODOLOGY __:.__"-___-__

DESCRIPTION, DISCUSSION, AND ASSESSMENT S. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(s) &. CONTRACT OR GRANT NUMIER(s)

J. Franlin, C. Gray, Jr., and Arthur Wrenn

9. PERFORMING ORGANIZATION NAME AND ADDRESS IC. NkGAM E tMNT.NP OJECT. TASK

Naval Surface Weapons Center (Code U32) Work request:
White Oak NOOC 2482 WR-10462
Silver Spring, MD 20910 task # 244
II. CONTROLLING OFFICE NAME AND ADDRESS QI. REPORT DATE

30 December 1983
is. NUMER OF PAGES

14. MONITORING AGENCY NAME ADORES.(lI different frm C001oll0 Office) IS. SECURITY CLASS. (of this frept)

UNCLASSIFIED
ISa. OgC ASStFICATION/ OOWNGRADINGscco ': :-

IS. DISTRIBUTION STATEMENT (of tis R*p-'j

Approved for public release, distribution unlimited

.

I0. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continua on reverse olde It necesary and Identlf by block mini.e).

Combat System Engineering System Engineering
Computer System Modeling Computer System Assessment

20. ABSTRACT (Contin aon re sod It ne esary and Idontify by block muobo)
-Volume I of this report7 describes, discusses, and assesses a performance

assessment and development methodology for computer-based systems comprised of
HSI (medium scale integration) and LSI (large scale integration) computers.
The report is not meant to be a user's manual or a detailed documentation
description of the methodology. In addition to describing the methodology,
one chapter is devoted to a discussion of testing versus analytic assessment.

DD ,o,3 1473 toiiON OF I NOV 65 IS OBSOLETE UNCLASSIFIED 0.
S 'N 0132- .s -01A. 60 SECURITY CLASVIIrCA'N 0- -MIS -AGE (When Dta En,.et"d

,..

UNCLASSIFIEk ________

20. (Cont.)

* Volume II of the report develops in detail some of the validity data used
in Chapter 4 of Volume I by applying the methodology to the Mk 116 Mod 1 and
Mod 0 Fire Control Systems.

UNCLASSIFIED
SECURITY CLASSIFICATION OF-PItS PAGE("Omn Data Entered)

NSWC TR 83-324

FOREWORD

Volume I of this report describes, discusses, and assesses a performance
assessment and development methodology for computer-based systems comprised of MSL
(medium scale integration) and LSl (large scale integration) computers. The
report is not meant to be a user's manual or a detailed documentation of the
methodology's software tools. In addition to describing the methodology, one
chapter is devoted to a discussion of testing versus analytic assessment.

Volume II of the report develops in detail some of the validity data used in
Chapter 4 of Volume I by applying the methodology to the Mkc 116 Mod I and Mod 0
Fire Control Systems. In addition Volume II illustrates how the methodology is
applied to a system.

The authors wish to acknowledge Phillip Hwang for rigorously reviewing
Volume I of the report.

Approved by: 0

___ J.GOELLER, Head
ton For System Engineering Division -

00

- .Iitv Codes
* and/or

Di- 0' ial

NSWC TR 83-324

CONTENTS

Chapter Page0

1 INTRODUCTION AND REPORT OVERVIEW 1

2 THE METHODOLOGY 5

3 THE AUTOMATED ASSESSTLS... 15

4 VALIDITY AND APPLICATIONS 27

5 CONCLUSIONS. 29

6 COMPUTER SYSTEM ASSESSMENT VIA THE METHODOLOGY VERSUS .
DIRECT MEASUREMENT. 33

Appendix

A SOFTWARE FORMAT STANDARDS FOR MAXIMIZING THE AUTOMATED
CAPABILITIES OF THE CSE TOOLS A-i

AL

6dk fm mem0

NSWC TR 83-324

ILLUSTRAT IONS

Figure Page

1 AUTOMATED ARCHITECTURE TOPOLOGY PROGRAM OUTPUT 6
2 EXAMPLE OF DEVELOPMENT OF THREAD EQUATION AND QUEUEING

NETWORK (STEPS 1 THROUGH 8 OF THE METHODOLOGY). 9
3 STEP 4 OF THE METHODOLOGY: END IN DEVELOPMENT TECHNIQUE . . . 11
4 THE METHODOLOGY'S STEPS AND TOOLS 22
5 EXAMPLE OF AN ARCHITECTURE THAT THE TIMING PROGRAM MAY GIVE

INVALID RESULTS 25

TABLES

Table Page

1 AUTOMATED ARCHITECTURE TABLE PROGRAM OUTPUT 7
2 THE METHODOLOGY'S MEASURES OF EFFECTIVENESS 13
3 OUTPUT OF THE DATA EXTRACTION (DATA BASE BUILD) PROGRAM 16

4 OUTPUT SOFTWARE TIMING PROGRAM 18
5 OUTPUT OF SOFTWARE TIMING PROGRAM 21

iv

NSWC TR 83-324 6

CHAPTER 1

INTRODUCTION AND REPORT OVERVIEW

Current development methodology as it is implemented for computer-based
systems is:

1. Formulate a set of requirements; 0.

These requirements usually fall into three categories: (a) data
requirements, requirements that specify the inputs and ouputs; (b) performance
requirements, requirements that specify rates and acceptable delays of inputs
and outputs; and (c) operational requirements, requirements that specify the
operational environment.

2. Develop a set of functions that when performed produce outputs that
meet the "data requirements".

3. Iteratively partition these functions into more detailed subfunctions,
combine into common subfunctions, and allocate functions/ subfunctions to
servers. (A server is anything that performs functions, e.g., hardware,
software, or people. Because of the input/output nature of the "data require-
ments" functions will have an interconnectivity. Since functions are assigned
to servers, this may necessitate the servers also having an interconnectivity.)

The reason common function/subfunctions are combined is because of the -

implicit assumption that the number of servers available is not an unlimited
resource or the servers/interconnectivity are already specified. With a
performance driven methodology (that will be described), functional combination
should not be done until after the performance indicates the servers in the
first cut/natural allocation are overloaded. If overload is indicated than this
natural allocation will need to be altered by functional combination, realloca- -
tion, or altering the server/function interconnectivity to form a more efficient
allocation. (This more efficient allocation usually does not map one-to-one ,.*-
with the natural functional flow of the system.)

This function/subfunction allocation to the system of servers is commonly
referred to as an architecture. As the iterations in 3 become more and more
detailed, the functional allocation is referred to as a "design."* The process

*One point of view is, that the point of transition from an architecture to a

design occurs when the functions are allocated to servers to reflect the way
the system will actually operate. In practice, however, it is usually some
arbitrary level of detail defined by the systems engineer.

-1 .

• -. . .' .• .)

NSWC TR 83-324

of translating a design into software is actually just an extension of the
process of finer partitioning of the subfunctions, i.e., software instructions
being viewed as very low level subfunctions. At the software phase of the
development process, these software instructions (subfunctions) are allocated to

* servers like CPU'S, 10 channels, disks, memory, busses, etc. There is no
*theoretical reason for limiting the functional allocation/architecture to any

particular level and in point of fact this allocation process could be extended
* to the detail of the molecular or atomic level. In practice, however, the

pLocess stops at a level where the allocation can be easily worked with, i.e., a
level that will produce the desired system with minumum cost and effort.

The current development methodologies (steps I through 3), if scrupulously
implemented, by their very nature insure that the "data requirements" (as
defined in step 1), are met. The reason being that the current methodologies
specify how the data requirements are to be developed. However, there is
nothing in the methodologies that insures that "performance requirements" are
met, because the current methodologies do not specify how to assess performance.
Some system engineering/software engineering methodologies have added an ad hoc
performance assessment step, but usually do not provide the details of how it is
to be implemented.

* Numerous proprietary tools exist to assess performance. These tools either
have a queue theoretic or event stepped simulation basis. However, these tools
do not provide techniques for generating their necessary inputs, (e.g., service/
execution times, service frequencies, branching probabilities, funtional flows,
etc.).

Without a performance assesment methodology it is not possible to:

1. assess if the architecture/design meets the performance requirements,

* 2. evaluate alternative architecture/designs,

3. perform quantitative architecture/design trade off studies.

It is the purpose of this report to present a complete and useable
performance driven development methodology that is applicable to each iteration
of the functional allocation process. From the discussion given above on
functional allocation this means the methodology is applicable throughout the
entire development process.

Chapter 2 presents an overview of the methodology. Chapter 3 discusses the
software tools of the methodology, discusses how the analyst utilizes the tools'

* outputs to implement the methodology, and discusses a limitation of the method-
ology as applied to a specific architecture type. Chapter 4 discusses the

* *If "maintenance" is viewed as just another iterative application of the
development process, then this performance driven methodology is applicable
over the entire life cycle of the system, which indeed it is. If the
methodology is applied at the points in the life cycle where developement has

* completed and the product is being delivered then the methodology acts as a
product assurance methodology.

2

NSWC TR 83-324

validity of the methodology in terms of percent error and also lists the systems
to which it has been applied. Chapter 5 presents conclusions on the
methodology's validity, applications, and optimal application environment.
Chapter 6 is a discussion of assessing a system by using the methodology or by
measuring the system with either a hardware or software monitor. Appendix A
presents a scheme for the optimal employment of the methodology by formatting *.

the software to allow for machine readable embedded comments. Volume II
develops some of the validity data used in Chapter 4 by applying the methodology
to the Mk 116 Mod l and Mod 0 Fire Control Systems.

.0

-Si

0.

3/4

"' " " " " ' " "- " -" -'" -" ' " " " " "." -t

-..p -". .-_ _ " . . " " .. . " - " .- . .", . ' .' i - - ' . . . - " , , , im - '

- 57 "- .

NSWC TR 83-324

CHAPTER 2

THE METHODOLOGY

The purpose of this chapter is to present a development methodology that

contains both data and performance methodology elements. Details of the
data/function generation elements are kept to a minimum because they are well
defined in existing development methodologies as discussed in Chapter 1. The
methodology to be presented will fill the need for a performance driven
development methodology.

Although this performance methodology is applicable to both systems that

are under development and existing systems that have been completed, what is to
be presented is written with the point of view of developing new systems.

The steps of the methodology are:

1. Using the latest development information, create a list of functions
and function frequencies (i.e., number of function executions per time interval)
that the development system will perform.

2. Find existing (software coded) systems that have high level functions
identical to or similar to the development system.

This is not as hard as it sounds because new systems are usually evolutions
of existing systems or incorporations of successful approaches from implemented/
prototype systems or algorithms.

3. Using an automated tool (see Chapter 3) applied to the existing
systems' software, generate the detailed architecture of the existing system
(that is of interest as defined by step 1). See Figure 1 and Table 1 for an
example of the output of the automated tool.

The "description" column of Table I is supplied by the analyst by consulting

the c-tisting system's Program Design Spec (PDS) or the comments in the code. The
"frequency" and "execution time" columns are filled in steps 5 and 6.

(It should be noted that step 3, step 5, and step 6 document the architecture/
design of existing computer systems. Usually the detailed software architectures
of existing systems never get documentated. This generated documentation should
be useful to analysts, system engineers, and maintenance and design personnel.)

4. Map the functions of the existing system onto the architecture of the
development system.

5.,

NSWC TR 83-324

I-L

'UU

4 UU II

U.UI cc
II

-I1
4a zu cc

16- >
o gU

z c
au

IcI

NSWC TR 83-324

WI ' J HI IJ " a a

-1 Z

*u I a 01 0

• ,o., 1 , z ,

S It

I I*r.
0

I-. I, IIOI
I i iI t

5 8 I"" 0 0 , 1 1 1 0 I I

-- a I I I I I I I o 0 0i i ! ! : a U 6

I,
, I I I*L 0 0

I I I OI

l I . I 0 0 II 0 0 O I I ,,,-, , S 0 I , , ' I ' 0

- .o a - i. I I S I 0 I S 0 S

"- i i i --Ai '

0 a 10 I I i"us,8 I 8 I ,

ItI

0I5 0 o I It0
0I •

a.:0 . . 0 a o *

It I 0 0 I

oIIt
I

I 0 0 0 0 I 0 I 0 e 0 -IIII!!!! I! O !

'Aw lo A

I .11 111 1 II I
I I Id. I :S 0 I I II

* a I -= -=a I -= I 0 4. 0 g s -=
* I I I I I It) .I 5 0-.

= 0' 6. l 03 , S 03. I

I I I I I * ~ *~ 0 0 0 04 0 04

,. I I IIII I' . . 1:,I-* ** . i : ,,, a. a... , , ,, -.

U W IC ow I I oIU, o ICI I .S , .0 , IC C 'C*-. a, ,, I .- o=a :,: ", " ' ' ' i* • S I I IS: , asI ,- o o. ow I,,I e I 0,. e t 0
* 0 * e J • 4 04 J 4 I * •eO Jla a IO I I I • @n ,<* I "" I" l 0 0 < '

I""
,- i, . , , . ,L ,~ , , , ,."I ' l I~ I '.

W I 9l l I I I I I I C I 44 04 I 00 I 44 I II9 I

,' 4 I I I I 0 I 0
I IW III O I 1 I0. IW-- ' ' '0 I I I S I I I .- ltcaiccleeeclcc cc gaa cl c lac ee ' eice cc cc"

* 10 1 0 i I 0 I I S S I I'

: 1 $ I I I . I "
I S I 'S I I I I 0 I 0 I S

* 0 0 I5 I I I- ' i ; I 0 ! I I"... : ,. , , a, : i " : ,a -4I I II : a I o oa • oo o a a.
* I S ' "- I a- . I , ,; I a .0 0 -"* - I I l Y ' ,: eg IT , l ~ *

. .i . . , . I .. I . , . , . ,~ • v o . , a . o" " I !' ' I " ' " 8 " I " I i I " I " j " l . I "
0 0 0 I 0 "0

I. 0 9 I .. s I 00

NSWC TR 83-324

The outputs of step 3 (e.g., Table 1 and Figure 1) detail all the functions
and their subfunctions* of the existing system. These functions and
subfunctions are organized in a hierarchy. The single digit number is assigned
to the highest function and the subfunctions are assigned multidigit numbers.
Thus I calls 1.1, 1.2, 1.3, etc.; and 1.1 calls 1.1.1, 1.1.2, etc.; and 1.1.1
calls 1.1.1.1, 1.1.1.2, etc. (See the first line of Figure 2.) This hierarchy
can be expressed as enumerated threads of functions/procedures, e.g., 1 + 1.1 +
1.1.1, 1 + 1.2 + 1.2.1, etc. If desired the individual threads that make up the
hierarchy can be summed to form one large thread for the entire hierarchy.

The mappping of functions of the existing system (picked in step 2) onto -

the architecture of the development system is a process of deciding which
existing system threads or even what individual subfunctions within a thread
should be assigned to a function of the development system. Thus every function
of the development system will be modeled by a combination of existing system
threads/thread pieces which in itself will form a thread, and will be called a
development system function thread or a model thread. In short, the model
threads are a reduction of a system architecture (hierarchy) into what the
analyst deems is the needed information/functions necessary to characterize the
system for which the desired model is to be built.

(If this methodology is being applied for the purpose of modeling an
existing system rather than for the purpose of modeling a development system,
then step 4 still must be done except the assigning of the thread to a
development system function is omitted.)

Usually all subfunctions of the existing system are included in the
function to be modeled in the development system even if some of the existing
system's subfunctions are not specifically called out by the development
system's current documentation. The rationale for this is that the development
system has not progrcssed far enough to consider this level of detail, and when
it does, it will have to somehow include these subfunctions. If on the other
hand, certain subfunctions of the existing system perform activities that will
be assigned to a separate function of the development system, then these
subfunctions will be excluded from the model of the development system's
thread. Examples of including and excluding subfunctions from a .thread are:

a. The existing system subfunctions include sin, cos, or square root
procedure calls, whereas the development system does not talk to this level of
detail. Thus sin, cos, etc. subfunctions will be included in the development
model thread.

b. The existing system subfunctions include disk Input/Output (I/O)
and the development system will have similar disk resident files even though the
I/O has not been designed yet. Thus these I/O subfunctions would be included in
the development model thread.**

*In Figure I the term (software) procedure has been substituted for the term

function. As was indicated in Chapter 1, the names of items may change at
different phases of the development process, but the actual development process
itself is just a repetitive iteration of the same function/allocation process.
Thus at the software phase of development we are allocating procedures.
Procedures called by parent procedures are equivalent to subfunctions.

**Swapping and Roll in/Roll out would be included in this rationale.

8 .

NSWC TR 83-324

FUNCTIONAL OR SOFTWARE ARCHITECTURE ARCHITECTURE TABLE

PROCEDURES PROCEDURE
121 IN THREAD TIME FREQ.

12+4*A 6

1125 A
1.2.1 8*8+ C30 1

121.210*D 0
1.3 7*20 0.8

HEATIN -6 [2+4-A+8*1 +5-A+A(lfS*B+30-Cl +0 110-Dl +7-2041.S)

QUEUEING NETWORK

FIGURE 2. EXAMPLE OF DEVELOPMENT OF THREAD EQUATION AND QUEUEING NETWORK
(STEPS 1 THROUGH 8 OF THE METHODOLOGY)

NSWC TR 83-324

c. The existing system subfunctions formulate and send messages,
whereas the development system has a separate message formulating/sending
function. Thus all message subfunctions of the existing system would be
excluded from the thread.

With this scheme, the usual objection to modeling a system in development;
namely, that the development of the system has not progressed far enough to know
its detailed subfunctions, can be overcome by approximating the development
system with low level detailed subfunctions from the existing system. As the
development system information becomes more detailed, it replaces information
used from the existing system, i.e., the assessment modeling becomes more
accurate. (The method of design that utilizes top level functions from the
development system and bottom level knowledge/functions from existing systems
can be characterized as an "End in Design Technique." See Figure 3.)

5. The execution times of the subfunctions/procedures that make up the
model thread are developed by applying an automated timing tool to the existing
system's (or if available the development system's) code. Details of this
timing tool and its use will be given in Chapter 3.

6. The frequency of occurrence of each subfunction/procedure in a thread
is either the same as the root function* of the thread (the frequency of the
root function was developed in Step 1); or a multiple of the root function
because the function is in a loop; or a fraction/?robability of the root
function because the subfunction/procedure is conditionally called in an IF
Test/branch. The automated timing tool indicates whether a subfunction/procedure
is called from a loop or a branch and the address of each. However, the analyst
must look up in the code being analyzed the actual variable/value controlling
the loop or condition of the branch. These loop and branch variables will
become the parameters of sensitivity of the architecture/performance model.*

7. By combining the information developed in steps 4, 5, and 6 the
erecution time of the thread (e.g., 1 + 1.1, etc-) can now be expressed as a
thread time equation. See the first and second lines of Figure 2. In Figure 2
proc 1 is made up of a segment 2 time units plus a loop that is 4 time units and

* llooped "A" number of times. Proc 1.2 is called within the "A" loop and thus its
frequency of call is "A." Since 1.2.1 and 1.2.2 are mutually exclusive due to
the "or," the frequency of 1.2.2 is zero. Proc 1.3 is conditionally called with
frequency .8. The remainder of Figure 2's architecture table is interpreted in
a similar manner. Note that in developing the thread time equation the
frequencies of the individual called procedures cascade back toward the root
function. (See the thread time equation of Figure 2.) The information contained

*Root Function = function labeled with a single digit number in architecture

* table (Table 1). The root function frequency is the thread's frequency.

**The quantitative values of these parameters of sensitivity may have to be

supplied from the operational scenario or from the characteristics of the
elements of the combat system. These parameters of sensitivity are the links
that connect the architecture model with the rest of the combat system (or a
systems analysis model of the combat system) or inputs from the real world.

10

. .- *.

NSWC TR 83-324

t2

UU

0 0

I. U.

0 '0

0 U

z a0 90
ci 0 -

Uo 0cc

ULU I = *O F ccLL.

NSWC TR 83-324

in Figure 2's architecture table (and thread time equation) is typical of the
type of information that can be extracted from existing software using the tools
of the methodology (see Chapter 3).

8. Represent the servers (computer hardware, human operators, etc.) of the
development system as a queueing network. See the third line in Figure 2.

9. Express the threads, threads' frequency, thread time equations, and the
queueing network mathematically in terms of a set of queueing theory equations.

10. Solve the queueing equations for queueing measures of effectiveness
such as given in Table 2. These MOEs give the performance assessment of an
architecture.

Steps 9 and 10 have been automated for most of the standard computer
architectures. The tool used at NSWC is POD. See Reference 1.

11. If Steps 8 and 9 cannot be accomplished analytically, solve the
queueing network with an event stepped/state space simulation.

12. As the development proceeds iterate Steps I through 10 with updated/
current information.

12

NSWC TR 83-324

TABLE 2. THE METHODOLOGY'S MEASURES OF EFFECTIVENESS

* AVERAGE RESPONSE TIME

* AVERAGE WAIT TIME

* AVERAGE DELAY

* QUEUE LENGTH

a CONTENTION

o BOTTLENECKS

* PROBABILITY WAIT TIME EXCEEDS A GIVEN VALUE

* PROBABILITY QUEUE LENGTH EXCEEDS A GIVEN VALUE

* PROBABILITY RESPONSE TIME EXCEEDS A GIVEN VALUE

* THROUGHPUT VERSUS LOAD

13/14

NSWC TR 83-324

CHAPTER 3

THE AUTOMATED ASSESSMENT TOOLS

DESCRIPTION

The automated assessment tools consist of three computer programs.* These
programs are run in sequence. The first program (the FORMATTING PROGRAM) merely
reads the (tactical, etc.) software (that is to be timed) that has been generated
on its native machine** and formats it into fixed record, fixed block, ASCII
that can be read efficiently by a CDC CYBER 720. The second program (the DATA
EXTRACTION PROGRAM) scans this formatted software's assembly/machine level
instructions to extract jumps and procedure calls on a per procedure basis. An
example of the output of this second program is given in Table 3. The output of
the Data Extraction Program is actually a data base of the procedure's machine
level jump instructions, the sums of the instruction times between the jumps,
and the procedure's calls to units outside itself.t A path within a procedure
can be characterized for timing purposes by a specific set of jumps. Since the
time along each jump segment of a path is known (i.e., the sums in the data
base), a path time can be calculated by summing the jump segment times. This is

*The programs are executed on a Control Data Corp (CDC) CYBER 170/720, are
written in COBAL, and use a CDC utility (Record Manager) to build and query an
index sequential data base. The timing programs currently will time code
written in AN/UYK-20/CMS 2M, AN/UYK-7/CMS 2Y, Digital Equipment Corp. (DEC)
PDP Il/FORTRAN IV, and also assembly langugage for these machines.

**The input to the Formatting Program is a specific compiler output option
(generated on the native machine) that lists a line of the high order
language (HOL) and the corresponding assembly instructions the HOL line
compiles to. This compiler output option is sometimes called a side-by-side
listing.

tTbe Data EXTRACTION program contains a table of all the existing system's
instruction types and their execution times. If the existing system and
development system have different computer types (e.g., AN/UYK-20 versus
AN/UYK-7) then the execution times listed in this table can be modified to
reflect what they would be on the development system's computer. Utilization
of the table in this manner would allow a model to be built of a futuristic
computer that had not yet been built.

15-

* --.* - o I , . U * . . - . .

NSWC TR 83-324

TABLE 3. OUTPUT OF THE DATA EXTRACTION (DATA BASE BUILD) PROGRAM

SUMMED 0
INSTR. TIME O

PROC SYS PROC INSTRUCTION BETWEEN Z JUMP JUMP PROC
NAME OF PROC ADDRESS INSTR. ADDRESS r- ADDR ORDINAL CALLED

UFSAO MSV02231 HFADI 002 0OCCOOSO 001 00046 023 00255
UFSAO MSV02231 00046 SCT 00000150 001
UFSAO MSV02231 00105Y JLE 00008560 002 00113 003
UFSAD MSVO2231 00112 00001110
UFSAO MSV02231 00113 LB 00000200 003
UFSAD MSV02231 00114 00130 DL 00000300 004
UFSAO MSV02231 00130Y JGE 00003550 005-00114 004
UFSAD MSV02231 00135Y JNE 00C00875 006 00143 008
UFSAD MSV02231 O0140OY JILT 00000550 007 00143 008
UFSAD MSV02231 00142 00000400
UFSAO MSV0 2231 00143 LA 00000150 008
UFSAD MSV02231 00157P LBJ 00004080 009 CSQRT
UFSAD MSV02231 00163Y JGE 00000625 010 00166 012
UFSAD MSV02231 001651 J 00000300 011 00202 01RX
UFSAD MSV02231 00166 LA 00000150 012
UFSAD MSV02231 00171Y JGE 00000475 013 00173 014-
UF.SAD MSVO2231 00172 00000250
UFSAO MSV02231 00173 LA 00000150 014
UFSAD MSV02231 00176Y JG 00000475 015 00201 017
UPSAD HSV02231 00200Y JLE 00000300 016 00202 018
UFSAO MSVO2231 00201 BZ 00000250 017 •
UFSAD MSV02231 00202 LA 00000150 018
UFSAD MSV02231 00206 00001150
UFSAD MSV02231 00207 00223 OL 00000300 019
UFSAD MSV02231 00223Y JGE 00003550 020-00207 019
UFSAD MSV02231 00246Y JNE 00005775 021 00253 022
UFSAD MSV02231 00252 0000 O6 00
UFSAD NSV02231 00253 OS 00000250 022 .
UFSAO MSV02231 00255E J 00000350 023 00046 001X

16

--- ~-~~-I 7 T

NSWC TR 83-324

exactly what a third program (the TIMING/DATA BASE QUERY PROGRAM) actually does
to develop all the path times within a procedure, i.e., an enumeration
technique. *

3Since the number of paths in a procedure can be in the thousands, only
summary statistics of the paths are presented; namely, the two smallest path
times (Min 1 and Min 2), the maximum path time (max), the average path time
(AVG), the empirical and unbiased standard deviation of the path times (UN-STD
ERP-STD), and the number of paths in each category (defined in the next

* - paragraph).

Paths are grouped into the following catagories (or combinations of
catagories): paths that contain loops, paths that do not contain loops, paths

* that do or do not contain procedures, executive state, or I/O calls. The
category of paths containing calls and loops is further broken into subsets of

* paths that contain the same combination of calls, loops, and/or the same
combination of calls contained within loops. Combinations are independent,

* i.e., exclusive (or in more general terms probabilistic). This makes it a
simple matter to determine the exclusivity of calls and loops. Summary
statistics are given for each catagory. The output of the third program (the

* TIMING PROGRAM) is given in Tables 4 and 5. (In Table 4 an asterisk beside a
I. loop indicates it is an inner loop, i.e., a loop within a loop. In Table 5

loops are denoted by parenthesis pairs, i.e., (,and inner loops are denoted
* by parenthesis pairs with pairs. The address of the loop extremities is

contained within the parenthesis. The loop single pass execution time
statistics are given beside the corresponding loop addresses, and the statistics
for the non-locjed segments of these paths are in the "COMBO STATS" section.)

Figure 4 shows the steps of the methodology in terms of the automated tools
and their inputs and outputs.

APPLICATION

The methodology of Chapter 2 works with a thread of procedures and a thread
execution time. The Timing Program output on the other hand, is in terms of
individual unlinked procedures and their multi-path execution times. It thus
remains a task for the analyst to decide which procedures (and path in the

. 6 procedure) will be selected to build the model thread. The best decision is
based on knowledge of the existing and development systems/code (as delineated

* in the methodology in Chapter 2, i.e., pick procedures and paths within
procedures that best characterize the system for which the model is to be built).

*A careful analysis could even result in not just one path within a
procedure being picked but statistically combining several paths and/or
procedures (using weighting factors/path counts/procedure counts obtained from
the Timing Program). On the other hand, if it is desired to do a quick/

*inexpensive analysis, a worst case analysis could be done with minimum existing
and development code knowledge by picking the maximum path/maximum number of

* procedure combinations from the Timing Program output.

* *The algorithm used is the enumeration of a modified binary tree.

17

NSWC TR 83-324

N . . . w w

CD w N l In b-U

?A. Wl Ul -A

1. f

a C, 0 U3

a. ~W P. a. a. a a . .

m In

UN it IDuu a,

Ml' IV 92 ID I I D MI 4% IS M A D

Ml ID ~~ ~N 3 ID rA P 3 I f

r . . Lr .
- 0 O-A 0 V) £ P I 3- 3-5 3- V-P

N ~ ~ ~ a CL N P NII P1 P1 Ps P3M S
Cc 8 a .9 P1fauz U 1
C, d3 jI N D I D 1 j41 4 D U S I

It A PI D I I D I D I

NSWC TR 83-324

4P r .r .6 .

aa
I-y

I- 4J £ a A. a a J6 d p

0-1

- .4 a a .4 *4 04 -

3= N 3

fm
64. . a.

, - 0 I. UN 6, D ND 0 w U, U*.4

C- aP 2 a o Pa .4 a

I~ -y N e ' .4

ma P, fu ry cy ay ft9 ie a a

c m 4 0 0

on wi la U U% a a0 a u.s

ry ay ftNa a .4 14ra

N cu N N.

n 99pi%(.4 99 4 %& Nt

.4N U% '0 ful m% ty on0

M Np M4 N No ca to9 N 4

an OR a a j

-0 ci a V ' 9 u

IIL

Nm WAaN 0 0 N9 1

45~% Np
A IL Z4

U 4 a 4
q a a 4.'.4 a a a a .4. .40IL

*SI a
i0 N N 00

a a .4*.a19

NSWC TR 83-324

IaL

IA.4 I - E

ca r2 c .4 fm ft;:~' P. FN P@I99 6

ey 0

.0. .4 .0 w 0

Na ~ Z a' 4.; m .

02

NSWC TR 83-324

ui- 1 00 4

in a

x . IA -IV% P. I .1 ut P. .4 P P.

.. V.

a aaaaa a mmomaa a

jii ;m.4* % I J,.44e * I
-, P I 4 A P In -f in P .4 A. .0 6.

P. MP%..P

In PA
a as

0 @- N .a WII# P aII.
cc CalU 0 004 940

* I~* * 4 a.44*A a4 *444.~Wi I WI

0 NA

o 'A P. P.N W
-A* D. t a a444

4.1 a aZ o :: m b

P. .4P. . N

0 0.0 .4 N4 M p 2-4
- % P. P .

I- a~ aa

C34
a a- w

o r of1 .4 . I
.4L 9 %0 a a

4L. a a

o~ IA zfP0N.i *P4I0PI z A I.

4 . W *PPP.. 0PPP.~ 0

-1 IL -) i= 0a@. a aaa4 -
.4 P. 0 aaa P U a

CL a aQ

9a a a

4. di < ae a 4Aa a a 40
4L 6. aL CLa C2 CLaa C3 I

NSWC TR 83-324

W > 0

IUU*

1

0

a. 00m2

02 2 c -
00 A

I- C
f8 L4 I--w j

z 00

jO 04 W c

jj 0

0 ;14

4 1 - 4
-

~440
cc ccA

Cw-ia

to 22

NSWC TR 83-324

The Timing Program is designed to either aid in picking a path and/or
provide information about a picked path. Consider the following examples:

1. The Min 2 path is much larger than the Min 1 path: this usually
* indicates the Min I path is just an error path and probably is not executed as a

realistic minimum path, i.e., the assumption is usually made that the code
executes without errors. Thus the Min 1 path should be excluded and an AVG,

* Max, or some intermediate path should be picked.

2. Min 1 or Min 2 time is very close to the Max time or the standard
deviation is small: in this case all path times are approximately equal and any
path can be used with confidence.

3. AVG and Max path times are close but far from Min I and Min 2 times:
this indicates either a very large max path or a large number of paths above
average. Which case applies can be checked by looking at the "number of paths"
in the timing program statistics.

The grouping of paths into combinations allows the analyst to gain a quick
understanding of a procedure or even indicate where in a procedure the analyst

*should look to make a decision. For example in Table 5 the timing program
output shows NAPIM has two modes of evaluation; jumping around the initial loops
to the loop at 733 (combinations 3 and 4); or doing all the loops (combinations
1 and 2). Also it is seen that the second call to CSLLXY is the only call that
is conditional. i.e., the other procedure caJls occur in every combination and
thus occur in every path in NAPIM. In order for the analyst to decide which
paths to choose he need only look at the jump condition around the initial
loops, (seen to be between the beginning of the program, location 645, and the
first loop, location 667), and the condition controling the second call to
CSLLXY, (seen to be between 733 and 1015).

If the analyst needs more information than is provided in the timing program's
normal output, he can select an option to output all the paths/path times within
a procedure.

As an aid to developing thread times two other programs can be used. One
* program outputs all the procedures of the "existing code" formatted into threads

expressed as an architecture table and topology as shown in Table 1 and Figure 1.
*(See Chapter 2 for an explanation of Table 1 and its threads.) This architecture

program also outputs the procedure names that could be used to make up the
threads. This list of threaded procedure names can be used as input to the

* Timing Program, i.e., it automatically tells the timing program which procedures
*to select and time from the data base. (Of course this list can be edited to

form the thread that best models the system being investigated.)

The second program (still in development) is an interactive program to sum
*individual procedure times into thread times, i.e., it develops the "thread time
* equation."

ASSUMPTIONS AND RAMIFICATIONS

As has been described the Timing Program uses the technique of enumeration
*to develop procedure times. The Timing Program assumes every path is

23

NSWC TR 83-324

independent and equally probable. In reality this assumption is not true
because path probabilities will depend on data values and/or data probabilites
evaluated at the jump points. As described in the last section the violation of
this assumption is corrected by forcing the analyst to gain knowledge of the
codes being analyzed (by utilizing the methodology's tool).

There is one software architecture that the analyst should be aware of
where the Timing Program will time paths that have low or even possibly zero
probability of occurrence. These low probability paths tend to skew the timing
statistics to larger values. The situation occurs when a code has two variables
that are mutually exclusive (e.g., when A-1l, B-0 and when B-1, A-0), the code
logic for Case A and Case B is interspersed within the same proc, and the logic

* segments are separated by conditional jumps. For this software architecture the
Timing Program will generate a path that is the sum of Case A and Case B logic
(i.e., a path where A-B), which is the maximum path since it is the sum of both

* A and B path logics (see Figure 5). This maximum (sum of A and B) path is never
supposed to be executed because it violates the data logic about the variables A
and B. However, because the architecture shown in Figure 5 has conditional
rather than unconditional jumps, the logic of the architecture (as developed by
the compiler) does not preclude the path where A-B. In order for the programmer
to insure the execution logic matches the variable logic he must test for the
Case A-B as a separate conditional jump. If he does not do this and just relies
on the believed inviolate properties of the variables, then it must be assumed
that the execution logic and architecture logic is identical, i.e., the Case A-B
can occur and it is truly the maximum path.

In order for the analyst to detect this particular architecture the timing-
program prints out the jump addresses of the max path. (It should be noted that
if the Max path is incorrect then the average path time and the number of paths

* will also be incorrect.)

24

NSWC TR 83-324

INSTRUCTIONS (CONTAINS NO JUMPS EXCEPT AS INDICATED)

A LOGIC B LOGIC A+B
CONDITIONAL JUMP PATH PATH LOGIC PATH

-IFA-1 IFA-0

A LOGIC

CONDITIONAL JUMP IFB-0 B-1

B LOGIC -

CONDITIONAL JUMP
A'IFAI IFA0

A LOGIC

CONDITIONAL JUMP

THESE PATHS ARE THE THIS PATH IS THE
RESULT OF THE JUMP RESULT OF THE
OPTION OF THE FALL THROUGH

CONDITIONAL JUMP OPTION ON THE
CONDITIONAL
JUMP

(CONDITIONAL JUMP A jump that can either fall through to the next instruction or jump to some
other instruction depending on the result of the condition tested.)

FIGURE 5. EXAMPLE OF AN ARCHTECTURE THAT THE TIMING PROGRAM MAY GIVE INVALID RESULTS

25/26

NSWC TR 83-324

CHAPTER 4

VALIDITY AND APPLICATIONS

VALIDITY/CASE STUDIES

The automated tools have been extensively checked against manual code

timing calculations with near perfect agreement.

Reference 2 showed that the accuracy for a case where the methodology was

applied to a development architecture similar to an existing architecture was 6

percent. For this case the existing system's execution time was measured with a

- software debug utility and the development system was measured with the
methodology. The existing system was the Mk 116 Mod 4 TMA Function and the
development system was the ASWCS Model 1 THA Function.

Reference 3 modeled the AN/UYK-25 SIMAS Acoustic Prediction Performance
Calculators execution times and compared results to manual stop watch

measurements. The results were 19 versus 20.5 seconds (7 percent) for the DIMUS -

case and for the ACTIVE Case 44 versus 53 seconds (20 percent).

Reference 4 used a hardware monitor to measure Navy tactical software
execution times and then built POD queueing models. A comparison of the
measurements indicated agreement to within 6 to 12 percent accuracy. This
result is essentially an accuracy measurement on the use of POD/queueing theory
as a computer modeling technique for Navy systems.

Volume II examines in detail the application of the methodology to a test

case of a dissimilar architecture between the development system and the

existing system. For this test case the Mk 116 Mod 1 ASW Fire Control System's
(FCS) Weapon Control Function (WCF) was assigned to be the development system
and the Mk 116 Mod 0 FCS as the existing systems. A model of the Mod I WCF was
constructed using the functions specified in the Mod 1 PPS/PDS (Reference 5), and

* Mod 0 based execution times were developed for these Mod 1 functions. The model
results were then compared to the actual Mod 1 execution times. Both Mod 1 and

* Mod 0 execution times were developed using the methodology's automated tools.
The accuracies range from +7 percent to +25 percent for the first level (tier 1) .- "

subfunctions that make up The Mod 1 WCF. (It should be noted that one WCF
procedure could have been modeled in two ways and one way gave an error of 50
percent. See Volume II for details.)

Using the frequency of each of the Mod 1 WCF procedures (given in Table 1

of Volume 11) and the errors calculated for each procedure (from Volume II) a

weighted average error can be calculated for the entire WCF function. The
result is:

27

,o%

NSWC TR 83-324

+13 percent (not using the 50 percent error in the average)

±21 percent (using the 50 percent error in the average)

APPLICATIONS

The methodology has been successfully applied to the following Navy systems:

Mk 116 Mod 0 FCS
Mk 116 Mod 1 FCS
AYQ/25 - SIMAS Acoustic Prediction System
ASWCS Model 1
FFG-7 WAP/LAMPS
Mk 116 Mods 5,6,7 (Systems in development, no code exists)
PDP FORTRAN (Prototype Mk 116 Mod 7 Correlation Software)

Results and details of applying the methodology are documented in
References 2 and 3 and in Volume II. Volume II, in point of fact, besides
showing accuracy, illustrates in detail that if necessary, the methodology can
be applied to the fine level of just groups of instructions within individual
procedures.*

*The timing program has an option to allow it to time code in an inputted
address range (within a procedure) instead of an entire procedure.

28

-. - 2 A .

NSWC TR 83-324

CHAPTER 5

CONCLUS IONS

VALIDITY

There are almost no statements of absolute mathematical certainty that can
be made concerning models, modeling, and thus modeling methodologies applied to
systems in development. The reason for this is that a model's system develop-
ment utility is in its predictive ability. The only way to be certain that the
model prediction is truly accurate is to compare it to measurements on the
developed system. However, if you have the developed system to measure, and you
can indeed measure it, you do not need the model to predict anything.* Because
of this circular problem a system development model can never be validated until

such time that it is not worth validating.

Therl is one exception to this worthlessness of validating a model and that
is to gain some data concerning the accuracy of the modeling technique/
methodology. Note the term used was "gain some data" versus "prove correct."
Validation of a model is usually only a case study, not a mathematical proof of
correctness. Even after doing a large number of case studies one has not proved
there exist no other case that gives a different result from the previous cases.

The validity results of this report (as well ab 100 percent of all the
results concerning predicative modeling accuracy) fall into the area of limited
validity that is true of case studies. With this clearly understood the
following can be said:

1. The methodology presents a viable/useable approach to assess computer
system performance.

2. The methodology can give results that are within acceptable limits of
accuracy.

APPLICATION ENVIRONMENT

In order to apply this methodology and get good results a certain
organizational environment is necessary. The necessary environment is one where
there is a free flow of information between the assessment analyst and the
architects/designers/programmers (i.e., the developers) of the system being
assessed.

*This is not true for the cases of system tuning, non-major upgrading, and

varying numerous parameters/scenarios as applied to an existing system.

29

NSWC TR 8 3-324

It makes no sense for the analyst to be building a model based on outdated
information, unless nothing else is available. While the above statement is

* immediately obvious, in most system development environments it is usually the -

opposite that is true, i.e., the analyst is using old information or he is
waiting for a development milestone to be met so he can get information which by
the time he gets it is old, i.e., he is always behind the developer rather than
current with him. Another frequent situation is that the developer says he
cannot give out the information because he has not chosen one of several
alternative approaches yet.

In all the above situations it would be more cost effective to give the
analyst information as early as possible. If this is done the analyst could use
the methodology to resolve design alternatives rather than come out with less
meaningful results because he is using unreliable data.

Another reason for an open environment is that the accuracy of the
methodology (as stated in Chapters 2 and 4) is directly dependent on knowledge
of the software being analyzed. The tools of the methodology allow an analyst
with minimal knowledge of the software being analyzed to complete the model.
However, the time/money needed to complete the model to a good accuracy is
greatly reduced if the proper expertise from the developers is available.

Since the methodology specifies what type of information/data is needed to
carry out an assessment (e.g., loop and branch data), the most efficient
information exchange between developer and analyst would be for the developer to
incorporate the required data directly into the software in a machine readable
form. Appendix A gives a scheme for incorporating the required data using
machine readable embedded comments. Other schemes such as formatting of the
executable code or a type of data dictionary is also possible.

The tools and methodology are most efficiently employed on non-convoluted
architectures that are made up of short non-convoluted/simple procedures. Since
simplicity and short procedures are also the basic tenants of modern software
design (e.g., structured programming, etc.), there should be no problem to
require software be written in a form that is efficient for assessment by the
methodology.

0 APPLICAT IONS

This methodology and its tools have evolved over a period of 3 years. The
tools have gone through many iterations to make them more comprehensive and more
efficient. These tools have been applied to a variety of Navy tactical software
and in one instance FORTRAN prototype software. Even though the methodology is
not totally automated, NSWC's use of the methodology tools has shown that a 2

* Bay AN/UYK-7 plus disk based system can be modeled quickly enough to keep pace
with the development process by two analysts that have no previous knowledge of

* any software being analyzed.

30

* NS14C TR 83-324

SYNTHESIS AND ANALYSIS METHODOLOGIES

A synthesis technique is one which is applied to a set of input variables/
requirements, and it outputs an architecture/design that meets the requirements.
An analysis technique is one which is applied to an architecture/design, and it
outputs an analysis of the architecture/design. The analysis shows the weak
points of the design. The design (weak points) can be modified/improved via
intuition/expertise, and the design is re-input to the analysis technique. Thus
by iterating the analysis technique the design can usually be made to meet its
requirements. By this method an iterated analysis technique approaches a
synthesis technique.

Thus the methodology of this report is not just an analytic performance
assessment methodology but indeed a complete development/synthesis methodology.

CONCLUSION

It is the conclusion of this report that the methodology represents an
acceptable approach for both the performance assessment and the architecture/
design documentation of existing systems, and the development of new
computer-based systems .*

*Assumes methodology presented would be combined with existing methods to
include techniques for the generation of requirements, functional analysis,

* software generation, and testing.

3 1/32

NSWC TR 83-324

CHAPTER 6

COMPUTER SYSTEM ASSESSMENT VIA THE METHODOLOGY
VERSUS DIRECT MEASUREMENT

The obvious question that most development organizations ask is that since
I have, or will have, the actual system, rather than apply an analytic
technique, that can never be 100 percent validated, wouldn't it be cheaper,
quicker, and more accurate just to measure the system? The not so obvious
answer is that in practice it may not be cheaper, quicker, or for that matter
possibly even more accurate.

In order to measure code you must first analyze the code to find the
addresses of points of interest to measure. Most hardware monitors only allow a -

limited number of probes to be set, which means that all the measurements cannot
be made at one time. If you are using a software monitor or DEBUG UTILITY you
cannot use too many probes because of the possibility of slowing the running
time of the system. In order to make the measurement, the code must be executing
which means a software driver needs to be written. All of these factors are not
trivial items in terms of time and money.

Once the measurement has been made, what has really been measured, the
system or the software driver/system combination? The answer is, of course, the

* combination, because if the driver is changed the measurement will change. That
means in order to understand the meaningfulness of any measurement, the code
must be analyzed to understand exactly how the driver is driving it. But this
driver/code analysis is tracing the effect of code variables, set by the driver.
But this is the same process that was called "threading" in the methodology.*,**
Unless this driver/code analysis is done, there is no way to insure what timing
path the driver is executing the code on, i.e., a maximum time path, a minimum
time path, or some intermediate time path. The methodology, on the other hand,
forces the analyst to explicitly know the execution path.

* A high-quality hardware monitor was used to analyze a Navy system equivalent
in size to a 2 Bay AN/UYK-7wt disk.4 It took on the order of 1 man-year of
code knowledgeable personnel to completely analyze the system. This is probablyKabout the same amount of time it would take equivalent personnel to use the
methodology.

*See steps 4 and 6 in Chapter 2, and the application section of Chapter 3.

**In actuality the designing of the driver is equivalent to the methodology's
threading.3

L33*.

NSWC TR 83-324

How is a hardware or software monitor validated? They are usually
validated by counting and surning pulses, cycles, or instructions on as many
system/code samples that is practical. But this is exactly the same validation
technique used on the methodology's tools. Thus the level of validation of both
measurement and the methodology is theoretically the same and in practice
depends on the degree of thoroughness of the validation process.

*The bottom line of measurement versus methodology is that a thorough

analysis and a well done measurement are probably roughly equivalent in terms of

I time, money,* and accuracy.

The advantages of a validated model over direct measurement are:

1. It is cheaper, easier, and quicker to investigate the effect of
parameterizations and various scenarios, i.e., perform trade-off studies or
discover catastrophic situations.

2. System timing can be easily investigated.

3. Limited system prediction/upgrade can be easily investigated. -

L4. Expensive measurement equipment does not need to be purchased.

* 5. Measurement systems usually do not calculate Queueing MOEs (see Table
2); whereas models usually do.

The main advantage of modeling over direct measurement comes early in the
j design process when there is nothing to make measurement on. At this stage,
* modeling can help direct the design and prevent building a system that can have

catastrophic failure. On the other hand, one way to validate a model is with
direct measurement driven by a well documented driver.

The ideal situation would be to have both measurement and methodology
I available because they certainly could be used to complement each other at

different stages of the development process.

*If the system already has a driver (or "wraparound simulator") available, and
in its development it was documented as to what code thread/path/addresses it
was driving the code on, then direct measurement might be quicker and cheaper
than the methodology.2 However, usually it is not known how the driver is

I driving the code. Using results from unknown driver paths is doing the
blackest of black box analysis.

34

NSWC TR 83-324

REFERENCES

1. Buzen, Performance Oriented Design (POD) Reference Manual, BGS Systems,
Waltham Massachusetts, Sep 1980.

I

2. Franklin, J., Models for the Architecture of the ASW Contro. Systems (ASWCS)
Mk 116 Mods 5, 6, and 7, NSWC TR 83-338, in publication.

3. Gray, C., Computer Modeling and Architecture of the AN/UYK-25 SIMAS, NSWC TR

83-48, Feb 1983.

4. Cooke, J. Performance Modeling of the Trident Fire Control System, NSWC TR

81-350, Mar 1982.

5. Computer Program Performance and Design Speciftcation for Underwater Fire
Control System Mk 116 Mod 1, WS14521, I May 1976, Naval Sea Systems Command.

7

3-

I"..

'." ~35 :.,

1

I.-

NSWC TR 83-324

il

APPENDIX A

SOFTWARE FORMAT STANDARDS FOR MAXIMIZING
THE AUTOMATED CAPABILITIES OF THE CSE TOOLS

In order to maximize the automated capabilities of the tool, the following
software format standards can be implemented. Code written to these stardards
could be scanned by another program to extract the information needed by the
methodology.

1. All comments be delineated with a fixed non-alphanumeric character.

2. Before each procedure an explanatory sentence be given. Each line of
the sentence should start and stop in a fixed column.

3. Major branch points within a procedure be commented with explanation.
Comments start and stop in fixed columns.

ad ..-.n

4. Same as 3 but applied to every procedure call instead of branch points.a5. Same as 3 but applied to every loop instead of branch points...

6. Loop comments include the minimum, maximum, and average values the loop
variables can assume. Also loop variables are explained.

7. Loop values (of 6) and loop variables be delineated by fixed non-alpha-
numeric characters in fixed columns.

A-i

~~~.o -..... .. . . .. °. °- ..- . j . .. .,. . .. - . ... . ..



a -

NSWC TR 83-324

DISTRIBUTION

Copies Copies

Commander Commander
Naval Underwater Systems Center Naval Supply Systems Command
Attn: Code 33B (R. Prager) I Attn: Code 0339 (G. Bernstein)

Code 33B (B. Thorpe) 1 Washington, DC 20376
New London, CT 06320

Commander

Commander Naval Electronic Systems Command
Naval Underwater Systems Center Attn: ELEX-G134 (J. Machado)
Attn: Code 3531 (P. Nadeau) 1 Washington, DC 20363
Blg 1171-2
Newport, RI 02841 NASA Langley Research Center

Attn: Ed Dean/Mail Stop 444 1
Commander Hampton, VA 23665
Naval Ocean Systems Center
Attn: Code 82 (Dr. R. Kolb) 1 Defense Technical Information

Code 6201 (J. Reardon) 1 Center
Code 62 (R. Thulen) 1 Cameron Station
Code 6211 (M. Stonebreaker) 1 Alexandria, VA 22314 12
Code 6212 (L. Fransdal) 1
Code 6201 (D. Callabro) I General Electric Corporation
Code 8324 (Sutton) 1 Attn: Andy Rasi 1

San Diego, CA 92152 Bldg. 1, Rm. R5
Farrell Road Plant

Commander Syracuse, NY 13221
Naval Sea Systems Command
Attn: SEA-61V (R. Wilson) 1 BGS Systems, Inc

SEA-61V (D. Perrill) 1 Attn: Jeff Buzen 1
SEA-61R (M. Wapner) 1 470 Totten Pond Rd
PMS-400 (R. Hill) 1 Waltham, MA 02254
PMS-400 (CAPT Donegan) 1
SEA-61R2 (P. Andrews) 1 Sperry (Systems Management)
PMS-400 1 Attn: J. E. Zellers 1
PMS-409 1 Great Neck, NY 11021
PMS-411 i
PMS-411B 1 Library of Congress
PMS-411C 1 Attn: Gift and Exchange Division 4
PMS-411G 1 Washington, DC 20540
PMS-411E I

Washington, DC 20362

(I)

. ." ,



* .. . . . ... . . . . . . .. . . ..I ... . . ...... - . . . .. = 7

NSWC TR 83-324

DISTRIBUTION (Cont.)

Copies Copies

Sperry (Computer Systems) K54 (W. McCoy) 1
Defense Syst. Div K54 (J. Cooke) I
Attn: S. C. Andersen 1 N 1

J. W. Albers 1 N04 (Dr. H. Crisp) 1
3333 Pilot Knob Rd N05 (C. Yarbrough) 1
St. Paul, MN 55122 NI0 I

N13 (D. Menscb) 1
RCA N14 (W. Martin) 1
127-331 Marine Hwy N20 1
Attn: Lee Fleisher I N21 (M. Masters) 1
Morristown, NJ 08057 N21 (D. McConnell) 1

N30 1

Federal Computer Performance N32 (N. Harder) 1
Evaluation and Simulation N51 (E. Price) 1
Center N53 (D. C. Hill) I

Attn: D. Ball 1 N302 (R. Cullen) 1
J. Wethersbee 1 N305 1

6118 Franconia Rd. N307 (J. Straub) 1
Alexandria, VA 22310 U 1

U04 I
University of Maryland U05 1
Attn: Dr. S. Tripatbi 1 U05 (B. Podolsky) 1
Rm. 4333 U20 1
Computer and Space Sciences Dept. U22 1
College Park, MD 20742 U23 (J. Cottrell) 1

U30 1
Internal Distribution: U31 1
E34 I U31 (H.-Ng) I
E431 9 U31 (J. Simpson) 1
E432 3 U32 1
G I U32 (J. Franklin) 3
K34 1 U32 (C. Gray) I
K34 (A. Wrenn) I U32 (H. Herring) I
K54 I U32 (R. D. Timberlake) 1

U04 (M. Stripling) 1

(2)



r -l

-.4.." 1 * 7, VA Et M "t 4.4i 4

*~1 .'r vArtl f~

40 mi .t 4' '' -jA

pro 1!?jt .6,4

:...2I 41-rt ~

igjt 0,. S

r w .4.*$ t.S ~ .''.

* 4~% ~ ss t .. , ' * A

.
ro x 

',


